Abstract Steiner Points for Convex Polytopes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Steiner Points for Convex Polytopes

STEINER POINTS FOR CONVEX POLYTOPES CHRISTIAN BERG Let & denote the set of all convex polytopes, degenerate or not, in ^-dimensional Euclidean space E. An abstract Steiner point for convex polytopes in E is a mapping S:2P-+E satisfying S(P+Q) = S(P) + S(Q) for all P, Qe0*, (1) addition on the left being Minkowski addition of convex sets, and S{a(P)) = o{S(P)) (2) for all Pe&* and all similarity...

متن کامل

Convex Polytopes

The study of convex polytopes in Euclidean space of two and three dimensions is one of the oldest branches of mathematics. Yet many of the more interesting properties of polytopes have been discovered comparatively recently, and are still unknown to the majority of mathematicians. In this paper we shall survey the subject, mentioning some of the most recent results, and stating the more importa...

متن کامل

Barycentric coordinates for convex polytopes

An extension of the standard barycentric coordinate functions for simplices to arbitrary convex polytopes is described. The key to this extension is the construction, for a given convex polytope, of a unique polynomial associated with that polytope. This polynomial, the adjoint of the polytope, generalizes a previous two-dimensional construction described by Wachspress. The barycentric coordina...

متن کامل

Approximations for Steiner Trees with Minimum Number of Steiner Points

Given n terminals in the Euclidean plane and a positive constant, find a Steiner tree interconnecting all terminals with the minimum number of Steiner points such that the Euclidean length of each edge is no more than the given positive constant. This problem is NP-hard with applications in VLSI design, WDM optical networks and wireless communications. In this paper, we show that (a) the Steine...

متن کامل

The Precision of Query Points as a Resource for Learning Convex Polytopes with Membership Queries

We consider the problem of learning convex polytopes from membership queries only, where the learner is initially provided with a single interior point. The class of polytopes learnable in this setting turns out to be those whose vertices can be eeciently enumerated given their bounding hyperplanes. It is an open question whether in general one can enumerate the vertices of a given polytope in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 1971

ISSN: 0024-6107

DOI: 10.1112/jlms/s2-4.1.176